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THE MAGNU8S FORCE ON A SHORT-BODY AT SUPERSONIC SPEEDS

ABSTRACT
~ The recent information obtained through the testing r~ epinning
models in the Aberdeen supersonic wind tunn~ls has ledi t- s b=-tter
understanding of the behavior of the Magnus force generated on rotating
projectiles. Data have been obtained at Masihi:2.0 on a low fineness
ratio (3.2) body of revolution. Spin rates up to 40,000 r.p.m. (‘1% % .40)

have been uced which cover the spin range used by conventional bullets
and shell.

The Magnus force is dependent on the boundary layer conditions
and vith most of the configurations tested the Magnus force is linear
with spin and angle of attack in the low angle of attack range. It
is only vhen the configuration base corner is rounded that ihe Magnus
force becomes non-linear with spin and angle of attack. .-
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TABLE OF SYMBCLS

3 e »pze? of eound

a = modcli diameter

§ i = model length

. Ma = Mach number = g

P = gtegnation pressure

q = dynamic pressure = % pU2

Re = Reynclds number = o_ng
R =  Reynolds number = eut
L H
'I‘o = gtagnation temperature

U = test section air velocity

a = angle of attack
¥ = angle of yaw
test section air density

K = test gpection air viscosity

AN L P 55055l St 5
he)
L}

‘ w = spin rate of model (plus is clockwise looking upstream)
ad
3 = am—
i 7 U
i
4 lgN = normal force coefficient = - : —
§ oU” a2
1 k- pitching moment coefficient -~ —fb—
m L4
i cug a’
i kp = Magnus force coefficient = —s—s— (plus 15 to left locking
1 oU° d°y upstreanm )
¢ k'I’ = Magnus moment coefficient = T (plus 1s plus force ahead of
: oUC 4y moment center)
§ Ky = Ballistics Megnus force coefficient = F
dhl" ol d¢ v sin a

e

= o when kF is linear in g and a is small and in radians.

Q
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o
]

Magnus force center of pressure location from base in calibers
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INTRODUCTION

At the time of publication of BRL Report 99h(l), describing the
Magnus data cbtained on a model of a 30mm aircraft bullet, many questionrn
concerning the Magnus force were left unanswvered.* Several of these
questions have been answered during the elapsed intervel and thzse fiucdings
are presented in this report. The questions are as follows:

1. A turbulent boundary layer existed on the mcdel éur’.ag the
previous tests. How different is the Magnus forece prolured on 2 spinning
bcdy having a laminar boundary layer from that prcirv:.ed with a turbulent
boundary layer?

2. A Magnus theory based or the mcv.zeny cf the laminar boundary
layer due to spin has been ad.enced Uy Martin(: . Does tl’e theory agree
vith experiments?

D In order “o obtaln <uvisfactory Magnus data with a turbulent
boundary layer, it is rcc.ssary that transistion be fixed with respect
to the model surfr.e. Thia usually resquires a transition strip. Does
forciug tran ition change the Magnus force from that obtained with natural
transit?! on?

b, Tue Mcgnus force on the 3Cum aircraft bullet is non-linear both
with epin and angle of attack. What is the reason for this?

Questisns 1 and 2 require a laminar boundary layer over the camplete

model surface. This limits the avgie of atte:rk %o fairly low values where
camplete laminar boundary laynxs ca”. exigt. Al:z « trans? t*oz‘gggh;f'

non-1¢

"4
e orvy mentioned in Questiion 4 can be connidesed in twe ports.
P s

a' The "uw angle of attack region where sign revesal (negntive Magnus
firce) of the Magnus force is possible and b) %he high sngle of attack

-

‘The unclassified results cf HBRL Report 994 are given in Appendix I.




region vhere the data ure only non-linear with angle of attack. It is
believed the two types of non-linearity are creatsd Ly ceparats

“bBcw.,

Prom the above it can be seen that most of the ques’ o o .07 oo
the lov angle of attack region and can be convenien*’ )
the high angle of attack region. This report 4~
angle of attack problems.

.4 separticed from
s48 omiy with the low
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JRUMENTATION

The models and instrumentation used for obtaining tr. data =ce
similar to that described in reference 1.* The models are 2 -inch
diemeter steel bodies mounted on precision ball vearing-. An alr turbine
mounted in the base of the model ig used f~r spinriang the model, and
the aerodynamic forces are recorded us’ng a four component (double pitch
and double yaw) strain gage balan-: read only while the model is de-
celerating (1.e. the air supriy to tlie turbine is turned off).

One important charge was made in the instrumentation since the
data reported in r.ferenc~. 1 were obtained. The power to the strain gages
was changed f.om 60 cycle,6 volt A.C. to 6 volt D.C, with filter condensers
in 2ach r.gnal ilead to damp out signal oscillatioas due to tunnel turbulence.
Alsr autor.ctic drum recorders were used to record the yawing momert signals
versi:s 8pin rate while the pitching moment signals were manually r2corded
Trom multi-scale Brown instrumentis as before. The anove changes increased
the accuracy of the data and decreased the tunnel time required fo: running
the tests.

A further refinement at the start of the testing was made in order
to simplify the data reduction procedure. Whenever the balance wa: installed
in the tunnel the model angle of yaw and angle of attack positions were
shifted slightly until zero angle of yaw and zero angle of attack w2re
indicated by the strain gage readings (an adjustable yaw strut was \-ed
for changing the angle of yaw). Next the balance was rolled slightly until
the yaw hinge lines were in the angle of attack plane so that the normal
force interaction with the yawing moments wag nil. Exactly zero interaction
on both gages is impossible due to a 1° angle between the two yaw hinge
lines as indicated by the calibrations.

E 3
The description of the instrumentation is reprinted es Appendix II of
this report for the convenience of those readers not having ready
access to classified reports.
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A typicel set of reduced data obtained from this instrumentation
18 shown in Pigure 2. Each curve represents the Magnus force and
center of pressure for a constant angle of attack from 40,000 rpm down
to zero rpm. It will be ncticed that the data are slightly asymmetric
with angle of attack, and at the present tixe it is believed that this
asymmetry is due to small changes in the lateral normal force caused
by small changes in the model yav during any one spin period. These
changes in yav could b2 due to play in the model bearings. The amount
of play necessary to create the asymetry shown ( :?.’é? = ,0005) can

be computed from the obtained data. The change in angle of yaw (A¥)

15 2222 where k for this model, Ma = 2.0, 1s .021 (Figure 3). &

H

18 tnen .024°. The bearings are 3" apart so the play in each bearing
need only be + .0006".

One further indication that the asymmetry is caused by a change in
the lateral normal force is that the asymmetry is mucli greater in the
rear yawing moment data than in the front yawing moment. Since the rear
strain gage is further from the normal force c.p., any change in the
normal force would have the largest effect on the rear yawing moment.

To partly overcome the remaining asymetric deficiency, the data
at pius and minus angles of attuck lave been averaged. This makes the

present Magnus force coefficient (-p?g-d?——) accurate to approximately

+ .0003, while the center of pressure is accurate to aprroxirately 1
caliber.

12



TEST RESULTS

The model of the “Oma sircraft bullet has a very complicated
aerodynamic shape which makes it difficult to nnalyze any data obtained
on the configuration. This is especially true if the data are non-
linear as with the obtained Magnus data. As a result it was decided
to begin testing with a simple aerodynamic shape (called the basic body,
Figure 1).

For the turbulent boundary layer case, transition was forced to
occur at a fixed distance from the nose by using an emery strip cemented
to the surface of the hody (Pigure 1). Pixing the transition line was
necessary for, as discussed in reference 1, the zero spin yawing moments
are dependent on the model roll position if transition occurs at various

axial positions around the surface of the model.

However, forced transition at other than zero angle of attack creates
slightly different conditions than those occurring with natural transition
(Figure 4). Also the forced turbulent boundary layer characterictics are
likely to be different from the natural boundary layer characteristics.
The tripping mechanism is certainly different and the velocity pr-files,
shear forces and effective Reynolds number may be different. Since the
Magnus force is generated by vi. cous action in the boundary layer the
above thoughts on differences between forced and natural transition
should be studied carefully.

During the testing of tne basic body, (Figure 1), three sizes of grit
wvere used as transition strips to obtain boundary layers having different
characteristics (Figures 7 to 10). Also the body was tested without a
trip ring to obtain laminar boundary layer data (Figure © and 6). The
Magnus force date obtained under these conditions at wd/U = .k are
campared in Figure 1l. The magnitude of the Magrus force decreases with
grit size and the Magnus force generated in the laminar boundary layer
case 18 less than that generated in any of the turbulent boundary layer

cases. Figure 1l alsv shows that in all boundery layer cases on the basic

13



body the Magnus force is linear with angle of attack. The data at lower
spin rates show that the Magnus force is also linear with spin and the
values of kr shown in Figure 11 will hold for any spin rate at or below
wd/U = .4. This shows conclusively that the negative and non-linear

Magnus force cbtained on the 30mm bulletis not caused by changes in the
boundary layer characteristics.

Martin's theory 2 develops an expression for the Magnus force by
determining thc asymmetry created in the boundary layer displacement
thickness due to the spin, and then applying the slender body theory to
the resulting asymmetric body. Martin's theory is elementary in that
many assumptions must be made and it may only be applicable in the
simplest cases. Simple body configuration, low angle of attack, and a
leminar boundary layer are essential. The theory disregurds the nose
and substitutes a blunt, open-ended cylinder, the length of which 1is
different from that of the nose plus body. In calculating the Magnus
force on an ogive cylinder configuration, Martin uses a theoretical cylinder
length equal to one half the nose length plus the actual cylinder length.
Tius expressions developed for Magnus force and its center of pressure are:

52
E 10.33(@)

¥ (r,)1/2
S - a0

For the configuration shown in Figure 1, the theoretical cylinder
length based on Martin's method is 2.45. Using this Z/d, Ky = .050 and
C.P. = .98 cal. for the test Reynolds number. This agrees better than
expected with the laminary experimental coefficients of l(r = ,054 and
C.P. =121 cbtained at Ma = 2.0, R, = 1.58 x 10°. At other Mach
numbers the agreement is not as good; however, it is within the range
of error one might expect, (Table I). Kelley and Thacker(>) 8ad (¥)
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of Inyokern, have extended the theory to include a radial pressure gradient
effect and a skin friction term. They also consider the next higher order
terms in spin vhich makes the Magnus force non-lineer in spin. Their results

are as follovs:

2
@ 2 12
K’ o ; (Rl)l > E.B)h - l6o526 (%.ﬁl) (a) + e

2 2
SP:u o+ 35 @F 4 ...

A plot of the above equations vith £/d = 2.45 cal. is shown in Figure 12.
The experimental data on the basic configuration with laminar boundary layer
show constant l('I with spin and do not agree with Kelly's results. The
experimental center of pressure da*a are too inaccurate to indicate a trend

with spin rate.

Most shell or bullets ithich are fired from guns require modifications
to the streamlined shape of Figure 1 in order that they may be successfully
launched against enemy targets. These modifications, in most cases, create
discontinuities in the configuration surface thereby complicating the
existing flow field.

The 3Cmm aircraft dbullet, vhich has several of these discontinuities
(Figure 13), was tested here previously and the Magnus force results
(Figure 1k and 15) vwere quite different from the linear results obtained
on the basic body. This configuration generates Magnus forces which are
ex.remely non-linear in spin and angle of attack. Under some angle of
attack and spin conditions the direction of the Magnus force is negative
rather than positive. The Magnus force on the basic body (Figure 1) showed
linear results, therefore the cause of the reversal must be one or more of
the discontinuities.

A process of elimination of the various non-streamlined components
of the shape showed that the rounded base corner is creating the negative
Magnus forces and the non-linearities at low angle of attack. (Pigure )6,

15



17, and 18). This result was very surprising and unexpected for the

rounded base appears to be one of th2 less significant changes in the
configuration. The blunt nose, the rotating band, and the crimping groove
are physically much larger changes in the streamline shape; however, these
changes have a lesser, although significant, influence on the Magnus force.
These three changes have their largest influence vhen used with the rounded
base. In this case the Magnus force becomes more negative than with just

the rounded base. It has also been determined that the rounded base produces
the negative Magnus force with both a laminar and a turbulent boundary

layer. The laminar case is shown in Figure 19.

A numerical computation of the pressure difference on the rounded
portion of the base which would produce the observed difference in Magnus
force has been made. The pressure difference is approximately .00k times
the stagnation pressure while the static pressure ratio at the base is
approximately .128. This means that only a small change in pressure is
required to account for the change in Magnus force and it is entirely
feasible that this pressure difference could be produced by the rounded
base.

During the reviev of this report it was pointed out to the author
that a series of tests (5) made in the Aberdeen Aerodynamics Range
shcved a large difference in the Magnus moment due to the addition of a
hemispherical base to the square based body (Figure 20). Assuming that
the change in moment is due to a force acting on the hemisphere the force
must act in the negative direction in order to produce the observed change
in moment. From this reasoning these tests support the evidence that
rounded bases create negative Magnus forces.

Shadowgraph pictures, (Pigure 21) taken during the Aerodynamics
Range tests on the hemispherical base show that the flow over the base
is similar to that over the aft portion of a sphere. The flow overexpands
a3 it attempts to follow the hemispherical surface and then must re-
campress in order to adjust to the wake flow. During this process thec
flow separates fram the hemispherical surface, with the exact location

16



of the separation being controlled by several factors. The model spin
may be one of these factors and it is conceivable that the influence of
the spin may adjust the separation point and also the pressures acting
on the hemispherical surlface such that negative forces are created.

Although the Magnus Porce center of pressure data are not sufficiently
accurate to pinpoint the force under various conditions, it is possible
to state that under all conditions tested the center of pressure is aft
of the forward yav gage (2-1/4 cal. forwvard of the base) and in most cases
it is located on the aft third of the body. This means that the Magnus
force distribution is concentrated on the aft portion of the body so that
changes in the nose configurations should not influence the force except
through possible changes in the boundary layer characteristics. No
conclusions on the motion of the center of pressure with angle of attack
and spin can be made due to the inaccuracy of the data.

No significant variation in pitching moment or normal force due to
spin of the configuration was noticed during sny of the tests.

17



CONCLUSIONS

A study of the Magnus force on lov fineness ratio bodies l~ads to
the following conclusions:

1. The Magnus force generated on the basic body with a laminar
boundary layer is lcss than the Magnus force generated on the same body
vith a turbulent bor™mAary layer.

2. The Magnus force generated on the basic body with a forced
turbulent boundary layer is dependent on the size of emery grit used for
the transition strip.

3. Martin's theory agrees with the laminar boundary layer data
obtained within the expected accuracy of the theory.

k. The Magnus force center of pressure is located on the aft
portiomn of the body.

5. A rounded base can create a negative and nun-linear Magnus
force.

6. Modifications to a streamlined body such as blunt nose, a
rotating band or a crimping groove influences the Magnus force to a
significant but lesser degree than does a rounded base.

T 4 . ,sire tased body has a positive Magnus force and the force
is linear with spin and with angle of attack up to at least 5°.

8. The normal force is not influenced by spin.

Ao Plalri

A. 8. PIATOU
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* * *
Mo Ke C.P. R, Ky C.P.
Exper. Theory
Exper. Cal. from base Theory Cal. frum dase

1.57 .055 J521 1.85 x 10° .06 .98
2.00 .05k A 1.58 x 10° .050 .98
2.47 .063 1.1/ 21 1.58 x 10° .050 .98
3,00 .066 123 1.58 x 10° .050 .98

*Based on #/d = 2.45
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THE NORMAL FORCE AND PITCHING
MOMENT ON THE BASIC BODY

MOMENT IS ABGuUT FRONT PITCH
GAGE: 2.3 CAL. AHEAD OF BASE

23 FIG. 3
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EFFECT OF BOUNDARY LAYER ON
THE MAGNUS FORCE OF THE BASIC BODY

Ma=2.0 Re= .65 X108

Ol0(—

O LAMINAR BOUNDARY LAYER

0 ¥20 TRANSITION STRIP { LARGEST GRIT)
»H #40 TRANSITION STRIP (MEDIUM GRIT)

O #80 TRANSITION STRiP ( SMALLEST GRIT)

FIG. I}



C.P. Cal. from base

THE MAGNUS FORCE PREDICTED
BY KELLY AND THACKER
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THE MAGNUS FORCE ON THE
30 MM AIRCRAFT BULLET
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THE MAGNUS FORCE ON THE
30 MM AIRCRAFT BULLET
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THE EFFECT OF A ROUNDED BASE
ON MAGNUS FORCE

Mg2.0 Re* 652106 84 - 20
FORCED TRANSITION AT -3-275 %40 EMERY

.010

005

-.005

-.010 : >

O BASIC BODY

& BLUNT NOSE AND ROTATING BAND

O BLUNT NOSE

a CRIMPING GROOVE

O ROUNDED BASE

D CRiMPING GROOVE 8& ROUNDED BASE

7 BLUNT NOSE,ROTATING BAND,
CRIMPING GROOVE ,8 ROUNDED BASE
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THE EFFECT OF A ROUNDED BASE
ON MAGNUS FORCE

Mg*20 Res 65x106  d .30
FORCED TRANSITION | ‘ldi 75 *40 EMERY

.010

.005

-.005

0O BASIC BODY

O BLUNT NOSE AND ROTATING BAND

O BLUNT NOSE

Q CRIMPING GROOVE

O ROUNDED BASE

O CRIMPING GROOVE & RGUNDED BASE

Y BLUNT NOSE, ROTATING BAND ,
CRIMPING GROUONE, 2 ROUNDED BASE
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THE EFFECT OF A ROUNDED BASE
ON MAGNUS FORCE

Mg"2.0 Rqr.65x10% %4 . 40
FORCED TRANSITION AT X--75 %40 EMERY
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THE MAGNUS FORCE ON A

ROUNDED BASE MODEL HAVING A

LAMINAR SBOUNDARY LAYER
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APPENDIX I

UNCLASSIFYED RESULTS OF BRL REPORT 994

For those readers who do not have immediate access to BRL Report 994
the unclassified results whici: eve yertinent to this reﬁt are listed
o
below. These results apply only to the 30sm aircreft bullet shown in

Figure 13.

1. The Magnus force is non-linear with angle of attack (Figure 14).

2. The Magnus force aad moment are negative st small angles of
attack and most spin rates (Pigure 15).

3. The Magnus force and morent are non-linear with spin at low
angles of attack {a & 7-1/2°) (Figure 15).

4. The Magnus force center of pressure is located behind the center
of gravity (1.3 cal. forward of the base).

L2



APFENDIX II

SPINNING MODEL INSTRUMENTATION

The air motor {8 an integral parl ol the model, the model
formins the cutside surface of the revolving portion of the motor.
This portion of the motor is mounted on the bearing outer races as
shown in Figure 22. The inner races of the bearing are mounted on a
cylinder which in turn is mounted on the upstream end of the model strain
gage balence and supporting strut. The model is ~otated by an impulse
air turbine with the turbine buckets being mounted in the model base
and the air nozzles, of which there are four, being mounted Jjust
upstream of the buckets on the supporting strut. An axial hoie drilli-d
in the supporting t serves us a passage for the high pressure air
to the nozzles; at the usual test conditiocng the flow ocut of the
nozzles should be approximately Mach number L. Since the nozzle air is
exhausted into th. tinnel, dry air from the wind tunnel storage sphere

is used as the high pressure scurce.

For these tests sufficient power to operate the motor easily was
obtained by using a supply pressure of 175 psi. Under the test conditions
the motor has a starting torque of L.2 in. 1bs. and develops .5 HP at
45,000 KoM, The acceleration time frcm O to 45,000 RPM is approximately

%20 sec.

A spring is used to preload the bearings so that the bearings are
subjJected to a thiust at all times. The preload appears to confine the
ball rotation to one axis, because a track is worn into the ball surface
after several thousand revolutions, Figure 23. A thermocouple is mounted
near the forward end of the strut sc that the temperature rise of the
strut can be measured when the model is spun. While breaking in a set
of bearings, the appearance of a well worn track is indicated by a leveling
5T or decrease in the temperature of the forwvard end cf the strut. After
seve-al ninutes of running at low speeds the vemperature stops rising and

may in the case of an extremely good bearing -cort decreasing. Bearings

12



ar: broken in by mearuring the strut temperature at 10,000 and 20,000
RPM and no bearings are run at higher speeds until no temperature increase
is obtained at the low speeds. If the preloed is removed fraom the bearing,
the bearing balls will reorient themselves and a rebreaking in of the

bearing is necessary.

Measurement of the temperature of the forward end of the strut is
also necessary during the tunnel tests for it indicates the condition of
the bearings during any one spin period. If the temperature ris: becomec
excessive or 1f the tempersture of the strut rises above 150%F the bearings
are rinsed in a clear solvent and regreased. The lSOOP limit was found to
be just under the temperature at which freezing of the bearings might occur.

Two permanent magnets are mounted near the base of the model (see
Figure 22). As the model rotates, the magnetic field generetrs a current
in a coil mounted on the stationary strut. Using eguitable circuitry, the

resultant coll signel is converted intc a signal proportional to the RPM
of the model.

Dynamic balancing of the model is accomplished using a sensitive
balancing rig which determines the location and amount of metal to be
removed from both the nose and tail of the model. The balancing reduces
the wear on the bearings especially at resonant speeds and reluces the

strain gage signal oscillations at resonant speeds. Necesaarily, readings

are not taken near the resonant points.

Temperature compensation of the strain gage bridges was accomplished
by varying the resistance of one of the bridge lege until the bridge
indicated no unbalance when the tempereature of the beam was changed.

During test, temperature non-uniformity of the beam caused by heat from

the bearings might still cause trouble, so as a check, the bridge unbalance
wvas observed as the model spin varied from 45,000 RPM to C under no flow
conditions. No bridge unbalance was found, except at resonant speeds, sc

the method of temperature compensation was conisidered satisfuctory.

&
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